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1. Introduction

The axion was proposed as a plausible solution to the strong CP problem of QCD [1, 3, 4].

More specifically, the QCD action contains the non-perturbative term

Sθ =
θ

32π2

∫

d4x ǫαβγλtrFαβFγλ , (1.1)

where tr represents the trace in the three-dimensional representation of SU(3) and θ is an

angular parameter. Given (1.1) one might conclude that |θ| could take any value between

0 and 2π, but in fact there are strong observational constraints on |θ|. A non-zero value

of θ results in a nonvanishing dipole moment for the neutron. The recent upper bound on

this dipole moment [5] implies that |θ| < 10−9. Explaining this small value is the strong

CP problem.

The axion, a, is a massless scalar field with the global shift symmetry a→ a+ ǫ. This

symmetry is primarily broken by QCD instanton effects with the coupling

∆S =
a

32π2

∫

d4x ǫαβγλtrFαβFγλ . (1.2)

– 1 –
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Combined with its kinetic energy, the action for the axion field is

Sa =

∫

d4x

(

−f
2
a

2
∂µa∂

µa+
a

32π2
ǫαβγλ trFαβFγλ

)

Sã =

∫

d4x

(

−1

2
∂µã∂

µã+
ã

32π2fa
ǫαβγλ trFαβFγλ

)

. (1.3)

In the second line above the rescaled axion field ã is introduced such that its kinetic energy

has the standard form. The parameter fa is called the axion decay constant and is inversely

related to the axion mass.

Given the similarity of (1.1) and (1.2), one can infer that the physical quantities are

independent of θ. The presence of the term (1.1) can be absorbed by a constant shift in

axion field via a → a − θ. Alternatively, one can think of the effect of adding the axion

field into the model as promoting θ to a dynamical field which is naturally relaxed to zero

by its vacuum expectation value.

There are strong astrophysical and cosmological bounds on the axion decay constant fa:

109 GeV < fa < 1012 GeV . (1.4)

If fa is less than 109 GeV, the axion coupling will be too strong, leading to the produc-

tion of too many axions. This would accelerate the evolution of stars such as red giants,

by transporting their energies into the outer regions more efficiently and shortening their

lifetimes. On the other hand, if fa is more than 1012 GeV, the axion coupling will be too

weak, leading to the production of too much axionic dark matter in the universe. For more

details on the cosmological bounds and related issues to do with axions see the review

papers [6 – 10] and references therein.

In this paper we would like to construct axions in models of warped heterotic string

theory. The paper is organized as follows. In section 2 we present the construction of the

axion in warped heterotic theory, without specifying the background. In section 3 we focus

on building a new AdS-like warped geometry in heterotic string theory. It is shown that

in this background fa can be lowered to values within the phenomenological window. In

section 4 we present another warped geometry in heterotic string theory where fa may fall

within the required window. A brief conclusion and discussions are presented in section 5.

2. Warped heterotic axions

Axions can naturally be embedded in string theory; for a review see [11 – 14] and references

therein. The problem with axion construction in conventional string theory models is that

it typically results in an axion decay constant higher than the range of phenomenologically

allowed values. This was extensively studied in [13] with the conclusion that for string

scale ms comparable to MP the axion decay constant is typically of order 1016 GeV, too

big to be allowed.

Here we consider whether it is possible to exploit the effects of warping to reduce

the scale of fa in heterotic string theory. Models of warped axions in the context of a

five-dimensional Randall-Sundrum scenario were presented in [15 – 18] .

– 2 –
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2.1 The effect of warping on fa

We take heterotic string theory compactified on a six-dimensional manifold M, which in

general will not be a Calabi-Yau (CY) manifold. Furthermore, the background spacetime

is a warped geometry where the metric is of the form

ds2 = h2
wηµνdx

µdxν + gmn(y)dy
mdyn. (2.1)

Here hw is the warp factor and ym, yn, . . . represent the coordinates along the manifold

M. The warp factor depends on the internal coordinates. Here and below the small

Latin indices m,n, . . . represent the coordinates tangential to M, the Greek indices µ, ν, . . .

represent the Minkowski coordinates and the capital indices M,N, . . . are ten-dimensional

indices.

The axion arises from the zero mode of the NS field potential BMN upon compactifica-

tion. Depending on which component of BMN one considers, there are two types of axion.

If all components of BMN are tangential to the Minkowski spacetime and are constant

over M, then the resulting axion is said to be “model-independent.” Bµν is Hodge dual

in 4 dimensions to a scalar field which is our axion. Historically, the name comes from the

belief that the details of the compactification would not influence the axion construction.

We shall show that this is a misnomer in the context of warped compactification since here

the axion depends sensitively on the details of the compactification. On the other hand,

one can consider Bmn with components tangential to the compactified manifold M. From

the point of view of a four-dimensional observer this is a scalar which is then termed a

“model-dependent” axion.

The ten-dimensional heterotic string theory action in the Einstein frame is

S =
1

2κ2

∫

d10x
√−g

(

R− 1

2
∂Mφ∂

Mφ− e−φ

2
H2 − α′

120
e−

φ

2 Tr F 2

)

(2.2)

where R is the Ricci scalar, φ the dilaton, F the E8 ×E8 or SO(32) gauge field with trace

in the adjoint representation of the gauge group and H the NS-NS three-form constructed

from the two-form potential B as well as the curvature and the gauge field F . Here κ

is the ten-dimensional gravitational coupling given by 4π κ2 = (2π
√
α′)8 ≡ m−8

s , where

ms is defined as the string mass scale. Finally, Tr represents the trace in the adjoint

representation and tr = Tr/60.

To take into account the effect of warp factors on the graviton and NS field zero modes,

we consider dimensional reduction of each mode separately. The four-dimensional action

for the zero mode of the graviton is calculated by perturbing the background in (2.1) such

that ηµν → ḡµν(x
α) where ḡµν(x

α) is the metric observed by the four-dimensional observer.

The Ricci scalar is decomposed into R = h−2
w R̄ + . . . where R̄ represents the Ricci scalar

constructed from ḡµν(x
α).

The four-dimensional action for the zero mode of the graviton, S
(0)
g , is given by

S(0)
g =

1

2κ2

∫

d4x
√−ḡ R̄

∫

d6y
√

g(6) h
2
w(y)

=
M2
P

2

∫

d4x
√−ḡ R̄, (2.3)

– 3 –
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where g(6) is the determinant of the internal metric and

M2
P =

1

κ2

∫

d6y
√

g(6) h
2
w(y) (2.4)

gives the Planck mass, related to the Newton constant by 8πG = M−2
P .

To obtain the action for the zero mode of Hµνλ we note that (since there is only one

harmonic zero mode in the internal space, i.e. the constant function 1):

H ∧ ⋆H = h−6
w H ∧ ⋆̄H, (2.5)

where ⋆̄ is constructed from ḡµν , independent of the warp factor.

Correspondingly, the action for the zero mode of the NS-NS fieldH = H(xα) is given by

S
(0)
NS = − 1

4κ2

∫

H ∧ ⋆̄H
∫

d6y
√

g(6) e
−φh−2

w (y) . (2.6)

Comparing (2.4) and (2.6), we see that in a flat background where hw = e−φ = 1, the

zero modes of both the graviton and the NS-NS three-form are Planck suppressed. This

is to be expected, since both of them belong to the massless sector of the closed string

theory in ten dimensions. However, as observed in [19 – 21], they appear with different

normalizations in a warped background. In order to take this difference into account, we

define the parameter β such that [21]

β =

∫

d6y
√
g(6) e

−φh−2
w (y)

∫

d6y
√
g(6) h2

w(y)
, (2.7)

where the action for the zero mode of the NS-NS field is now given by

S
(0)
NS = −βM

2
P

4

∫

H ∧ ⋆̄H. (2.8)

The Bianchi identity for the gauge-invariant field H is

dH =
α′

4

(

tr R ∧R− 1

30
Tr F ∧ F

)

. (2.9)

To incorporate the axion in our construction, we dualize the B-field in the four-dimensional

action by a scalar field a, via the following Lagrange multiplier for the Bianchi identity:

∫

a

[

dH − α′

4

(

tr R ∧R− 1

30
Tr F ∧ F

)]

. (2.10)

The action containing the B-field kinetic energy and the Lagrange multiplier is

S = −βM
2
P

4

∫

H ∧ ⋆̄H +

∫

a

[

dH − α′

4

(

trR ∧R− 1

30
TrF ∧ F

)]

. (2.11)

Integrating out H in terms of the field a one obtains

⋆̄H =
2

βM2
P

da . (2.12)

– 4 –
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This is equivalent to the statement that in four dimensions the axion is Hodge dual to the

anti-symmetric Bµν field. Plugging this into the action (2.11) yields

S(a) =
2

βM2
P

∫

d4x

(

−1

2
∂µa∂

µa

)

+

∫

a
α′

4

(

1

30
Tr F ∧ F − tr R ∧R

)

. (2.13)

Upon rescaling the axion as in (1.3) and noting that 2π
√
α′ = m−1

s , we find

fa =

√

2

β

m2
s

MP
. (2.14)

In an unwarped compactification with β = 1 and taking ms/MP ≃ 1/18 in order to get

the right GUT scale from string theory, one obtains fa ≃ 1016 GeV as in [13], too big to be

acceptable. However, β can be significantly greater than one in a warped compactification.

From (2.14) we see that this can reduce fa to the range 109 − 1012 GeV. In subsequent

sections we will provide specific warped examples where β is calculated to be large enough

such that fa falls within the desired window.

2.2 Example: heterotic compactification on a non-Kähler manifold

There have been many attempts to embed an axion construction in string theory (for an

extensive review see [13] and references therein). Starting with a string scale comparable

to MP , it can be shown [13] that in most cases fa is close to the GUT scale. The exceptions

are when the Standard Model gauge fields are supported on vanishing cycles, where it is

possible to lower fa to the desired phenomenological bound [13].

Axion construction in very large compactification volumes was studied in [12]. A very

large compactification corresponds to a low-scale string theory. It is argued that up to

numerical factors of order unity, fa ∼ ms ∼ 1011 GeV.

The axion in a warped heterotic background was considered in [14]. The model con-

sidered there is a heterotic compactification on a non-Kähler manifold [22 – 28]. The non-

Kähler background is a non-trivial T 2 fibration over a K3 base. In the Einstein frame the

full ten-dimensional metric can be written in the following way:

ds2 = e−
φ

2 ηµνdx
µdxν + e−

φ

2

[

(dx+ α1)
2 + (dy + α2)

2
]

+ e
3φ

2 ds2K3, (2.15)

where x and y are local coordinates such that dx + idy is a holomorphic form on the T 2

fibers, and the αi are local one-forms on the K3 base. For this particular compactification

we see that the dilaton is related to the warp factor via e−φ = h4
w. Plugging this into our

expression for β in (2.7), one finds that β = 1. As mentioned in [14], the warping does not

help to reduce fa for the model-independent axion in the above background. This indicates

that the axion decay constant is large if one starts with a large string scale. One way out of

this conclusion is to construct a background where the dilaton is independent of the warp

factor, so β can be made sufficiently large. The backgrounds studied in sections 3 and 4 of

the present work both satisfy this condition and we bypass the difficulty of cancellation of

the warp factor in (2.7) mentioned above.

– 5 –
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2.3 Example: “model-dependent” axions in IIB

In this work we focus on the construction of a “model-independent” axion. However, one

may naturally ask whether “model-dependent” axions with the allowed decay constants

can be constructed in our formalism. The answer seems to be affirmative,1 although in

this paper we will only address this issue briefly because it requires us to know the details

of the cohomological and homological properties of the internal space.

To give one example, consider a model where the axion arises from the zero mode of the

RR four-form potential C(4) in type IIB string theory, say for example the background [29].

To support the axion we need a D7-brane such that
∫

C(4) ∧ F ∧ F (2.16)

is non-zero, where the integration is over the D7 worldvolume. It is assumed that F

has legs along the Minkowski coordinates, while C(4)(x
α, ym) has legs entirely along the

compactified directions with xα and ym denote the coordinates on the Minkowski and the

internal spaces respectively. This means that we are decomposing C4 as

C4(x
α, ym) = ϕ(xα) ⊗ h4(y

m) (2.17)

where h4(y
m) is a harmonic four-form in the internal space and ϕ(xα) is a scalar which will

have axion-like couplings. Clearly, since the harmonic four-forms in the internal space are

classified by the second Betti numbers b2, there are b2 axions from this decomposition. In

the following we will choose b2 = 1 to get a single axion for our case, but this is of course

a model-dependent statement. Furthermore, it is also easy to see that in terms of powers

of the warp factor hw, the kinetic energy of the axion scales like
∫

√

g(6) h
2
w|h4|2 . (2.18)

where |h4| is the magnitude of the harmonic four-form in the internal space. Using Hodge

duality, this could be mapped to the harmonic (1, 1) form, h2, in the internal space. Now,

constructing β using (2.7) we see that:

β =

∫

d6y
√
g(6) h

2
w(y)|h2|2

∫

d6y
√
g(6) h2

w(y)
, (2.19)

which may be significantly bigger than one depending on the behavior of the harmonic

two-form in the internal space. Unfortunately, the exact form of h2 for a CY (or non-CY)

manifold is not known so we cannot make any concrete statement here.2 Secondly, we

require the harmonic form to be peaked near the throat of our internal space, which again

requires us to know the precise form for the h2. We do believe however that there is no

conceptual problem in finding some internal space that can give rise to the required h2

forms.

1We thank Joe Conlon for discussion on this issue.
2To determine the harmonic form we need the metric of the internal space (say CY). So far there is no

known solution for the metrics of compact CY spaces.

– 6 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
6

This conclusion can also be generalized to the zero modes of other “model-dependent”

axions. The upshot is that model-dependent axions look like scalars from a four-dimensonal

point of view and, as one can easily check, β for a scalar is dependent on the warp factors as

well as the magnitude of the harmonic forms in the internal space. Tuning these correctly

we can possibly have a large β from such compactifications although the results depends

crucially on our knowledge of these harmonic forms (which is lacking at this stage).

The model-independent axion on the other hand is an exception: we are not required

to know the detailed topological properties of the internal space as there is one and only

one harmonic zero form in the internal space (which can be set to 1). Additionally, as

mentioned in [19, 20], tensors of rank three and higher have the interesting property that

their zero modes are strongly suppressed compared to the graviton zero mode.

Our goal in the rest of this paper is to construct warped geometries in heterotic string

theory to see whether β for the model-independent axion Bµν can be made sufficiently

large to lower fa into the narrow phenomenological window.

3. An AdS-type background in heterotic theory

As explained above, in order to get large enough β we need to construct warped geome-

tries where the dilaton is independent of the warp factor. We construct backgrounds with

precise warp factors using certain identifications between (p, q) and (0, q) sigma models

where p = q = 1, 2, 4 for bulk N = 1, 2, 4 supersymmetries respectively. A class of the

resulting heterotic backgrounds will resemble warped AdS5 backgrounds. In the following

we will discuss the sigma model identifications that we shall use to construct our back-

grounds. Readers interested only in the final result should skip section 3.1 and go directly

to section 3.2 where our backgrounds are presented. In section 4 we present another new

heterotic background which has a warp-independent dilaton but non-trivial torsion.

3.1 Sigma-model constructions

Our present analysis will require us to study non-linear sigma models in both type II and

heterotic theories, so we begin with a brief review of the method. First note that there are

two ways to drag a type IIB background to the heterotic side:

• U -dualise a type IIB toroidal orientifold background to heterotic, or

• use sigma model identification to bring a torsional type IIB background to heterotic.

The two techniques achieve similar goals, but each comes with distinct advantages and

disadvantages. To begin with, the first technique demands a ten-dimensional framework

while the second works only from the two-dimensional point of view. Secondly, both

techniques will in general involve some kind of U-duality needed to bring the type IIB

theory into the required form. For the first, one must find an orientifold limit of a given

type IIB background. This is not always easy. Being able to lift a given type IIB background

to F-theory in principle guarantees the existence of an orientifold point but the lifting is

not always easy to realise in practice. Orientifolding in the presence of background fluxes

– 7 –
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implies projecting out some components of the fluxes, and therefore finding a consistent

orientifold corner of a given F-theory compactification can turn out to be subtle.

The second technique might at first appear easier than the first, but this is not always

the case since not every type IIB background can be pulled to the heterotic side. In

particular, only specific choices of IIB fluxes are allowed by such an operation, so the

presence of background fluxes can prove an obstacle. Since a generic warped type IIB

compactification may therefore not have a heterotic dual in the latter, i.e. sigma model

sense, it is sometimes necessary to modify the type IIB background in order to be able to

find a heterotic dual. In general, a judicious choice of the appropriate technique should

allow us to find the required heterotic dual from type IIB theory.

Our aim in the following analysis is to develop a heterotic background with say (0, p)

worldsheet supersymmetry from a given type IIB background with (p, p) worldsheet super-

symmetry. The simplest way to do this is to add non-interacting fields to the sigma-model

action with (p, p) supersymmetry. In general this will ruin the carefully balanced (p, p)

supersymmetry of this model. We can use this to our advantage by adding non-interacting

fields only in the left-moving sector. This breaks the left-moving supersymmetry, and one

can therefore hope to obtain an action for a (0, p) model from the (p, p) model.

To make this precise, let us consider the simplest case with p = 2 and define the

corresponding sigma-model action in the following way:3

S =
1

8πα′

∫

d2σ

[

(gij +Bij)∂+X
i∂−X

j +
1

4
Sgfermionic

]

, (3.1)

where the Xi are the bosons and Sgfermionic denotes the fermionic part of the action. Written

this way, the action requires no other corrections4 and will consequently be anomaly free.

The fermionic part is made of a right-moving sector containing eight fermions (which we

denote as ψp) and a left-moving sector also containing eight fermions (which we denote as

ψq̇). Together they give rise to the type II worldsheet action.

Taking into account the NS three-form fields HNS , the fermionic part of a Green-

Schwarz superstring can be written as

Sgfermionic = 4iψp∆+ψ
p + 4iψq̇∆−ψ

q̇ +R(+)ijklσ
ij
ṗq̇σ

kl
rsψ

ṗψq̇ψrψs, (3.2)

where ψp and ψq̇ are the two inequivalent spinor representations of the transverse D4 and

the sigma matrices are defined as σijṗq̇ ≡ Γ
[i
r[ṗΓ

j]
q̇]r with a similar definition for the other

components. The Gamma matrix has 8 × 8 blocks given as

Γi ≡
(

0 Γipq̇
Γiṙs 0

)

, (3.3)

which are used to define the σs above. In this notation we have to specify what we mean

by the covariant derivative ∆± and the curvature R(+)ijkl. The most generic definition of

3For p = 1 the situation is a little subtle as we will discuss later.
4For example Chern-Simons corrections.

– 8 –
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the covariant derivative is given by [30, 24]

∆±ψ
q(q̇) = ∂±ψ

q(q̇) +
1

2

(

ω − 1

2
H

)ab

σ
pq(ṗq̇)
ab ψp(ṗ), (3.4)

where 1
2H is the torsion and we have chosen the torsional connection ω+ ≡ ω − 1

2H, and

not ω− ≡ ω− 1
2H (see [24] for details on this). Observe that in the absence of HNS there is

no such ambiguity in the definition of the GS superstring. Finally, the curvature R(+)ijkl

that we defined above is measured w.r.t. the connection ω+, where

Ri(+)jkl = ∂kΓ
(+)i
lj + Γ

(+)i
km Γ

(+)m
lj − (k ↔ l), (3.5)

and Γ
(+)i
jk ,H i

jk are defined as

Γ
(+)i
jk ≡

{

i
jk

}

+
1

2
H i
jk, H i

jk = gilHjkl. (3.6)

The above therefore gives the classical action for the type II string with background

NS three-form fluxes. To get the (0, 2) heterotic action from the type II action described

above, we take the following steps:

• Keep the right-moving sector unchanged, i.e. the ψp remain as before.

• In the left-moving sector, replace the ψq̇ by eight fermions ΨA, A = 1, . . . 8. Also add

24 additional non-interacting fermions ΨB , B = 9, . . . 32.

• Replace ω+ by the gauge field A, i.e. embed the torsional spin connection into the

gauge connection.

The above set of transformations will convert the classical type II action given in (3.1)

to a classical heterotic one i.e. (0, 2) one. One might, however, wonder about the Bianchi

identity in the heterotic theory. The type IIB three-form fields are closed, whereas heterotic

three-form fields satisfy the Bianchi identity. These statements seem to be reconciled by the

embedding ω+ = A, which should result in a closed heterotic three-form. However, because

of subtleties discussed in [24, 31, 32], the above embedding will not allow any compact non-

Kähler manifolds in the heterotic theory, so this embedding is not an admissible solution

to the problem. Therefore, as a first approximation, we assume an embedding of the form

ω+ = A + O(α′). (3.7)

Using this, the new action with (0, 2) supersymmetry becomes

S =
1

8πα′

∫

d2σ

[

(gij +Bij)∂+X
i∂−X

j + iψp(∆+ψ)p + iΨA(∆−Ψ)A +

+
1

2
Fij(AB)σ

ij
pq ψ

pψqΨAΨB + O(α′)

]

, (3.8)

where due to the embedding (3.7), F aij is the Yang-Mills field strength measured w.r.t. Lie

algebra matrices T aAB. The fermion indices are A = 1, . . . , 32, which means there are 32

– 9 –
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fermions, and hence the T a form tensors of rank 16. The reader can easily identify the

above action as an action for a heterotic sigma model with torsion [24, 26, 30, 33 – 35]. The

action of the Laplacian (3.4) changes accordingly to

∆−ΨA = ∂−ΨA +AABi (∂−X
i) ΨB;

∆+ψ
p = ∂+ψ

p +
1

2
(ω+)abσpqabψ

q; (3.9)

Hijk =
1

2
(Bij,k +Bjk,i +Bkj,i) .

At this stage the replacements (3.9) may lead us to think that the sigma model has only (0,

1) supersymmetry. This is only superficial, and the situation is similar to the (1, 1) action

for the type II case [30]. The full (0, 2) susy will be determined by additional actions on

the fields (exactly as for the (1, 1) case). In the absence of torsion the above action (3.8)

takes the following familar form:

S =
1

8πα′

∫

d2σ
[

δij∂+X
i∂−X

j + iψp∂+ψ
p + iΨA∂−ΨA

]

, (3.10)

with the equations of motion

∂+ψ
p = 0; ∂−ΨA = 0, (3.11)

that give us the orientations of the two worldsheet fermions.

Classically the action (3.8) is invariant under the following transformations:

δΨA = ΛAB(X)ΨB , δAABi = ∂iΛ
AB + 2A

C[A
i ΛB]C ,

δΨP =
1

2
Θab(X)σpqabΨ

q, δωabi = ∂iΘ
ab + 2ω

c[a
i Θb]c, (3.12)

where Λ denotes the local group rotations and Θ denotes local SO(8) Lorentz rotations.

However, as is well known, these transformations are anomalous. The anomaly can be

cancelled by the following choice of our three-form flux:

H = dB − α′

[

1

30
Tr

(

A ∧ F − 1

3
A ∧A ∧A

)

− tr

(

ω+ ∧R(+) −
1

3
ω+ ∧ ω+ ∧ ω+

)]

, (3.13)

which is of course the correct description for the torsional three-form H in the heterotic

theory. Observe that the torsion H appears on both sides of the equation (3.13).

The above set of manipulations that convert a classical type II action to a classical

heterotic one will help us to understand various things about the heterotic theory using

data of type II theories. One important thing to notice is that both the metric and the Bij
fields can be taken to the heterotic side provided the original type II background does not

have any HRR fields. In the presence of HRR the simple manipulations that we performed

cannot give a (0, 2) or a (0, 1) model. We are therefore particularly interested in type

II models that allow only for an NS three-form. When both NS and RR backgrounds

are present, it might still be possible to perform the above manipulations if one can find

an equivalent U-dual background. This U-dual background will in general not be Kähler
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(not even conformally Kähler). Observe that these U-dualities do not require the original

background to be at the orientifold point. This is therefore different from the analysis

performed in [22, 23].5

Yet another issue is the existence of the bundle. This can be inferred from the detailed

analysis given (at least for the U(1) case) in [26, 37]. However, the situation here may

become a little simpler than the one in [26], because of the embedding (3.7). Recall that

for the manifold studied in [26], a given complex structure J must satisfy the following

constraint

i∂∂̄J = 0 + O(α′), (3.14)

which means that we can study the stability of bundles using the recent analysis of Li and

Yau [38] and Fu and Yau [39]. For our case we will analyse the vector bundle directly from

the sigma model by coupling the closed string worldsheets to open string worldsheets. We

will touch on this issue later in the paper.

To construct an explicit heterotic background we have to make sure that the susy

variations of the gravitino field χi and the gaugino field λA vanish in this background

under an arbitrary susy parameter η(X). This translates to the following set of well-known

conditions:

δχi ≡ ∂iη +
1

2

(

ωabi +
1

2
Hab
i

)

Γ[aΓb]η = 0,

δλA ≡ FAij Γ
[iΓj] = 0. (3.15)

Therefore to conclude this section we see that we can drag a given type IIB background

to the heterotic side using our sigma-model identifications provided under U-dualities the

IIB background has a non-trivial NS three-form and a metric with no RR forms. In the

following section we will provide concrete constructions of a class of such backgrounds.

3.2 Construction of new heterotic backgrounds

From section 3.1 we know that we require a type IIB background with non-trivial metric

and NS three-form. We also require a dilaton independent of the radial coordinate6 so that

β can be made reasonably large. One background that immediately comes to mind is type

IIB theory on AdS5 space. However, the minimally supersymmetric AdS5 background, i.e.

AdS5 × T 1,1, given by Klebanov-Witten [40] cannot be easily pulled to the heterotic side

using our sigma-model identification. The non-trivial fibrations of the internal space T 1,1

create extra fluxes under U-duality which prohibit a heterotic dual for this background.

We are therefore left with the other choices: AdS5 ×S5 and AdS5 × S5

Zn
with7 n = 2, 3, 4, 6.

5Another interesting question would be to allow for both NS and RR backgrounds in the S-dual type I

picture. This is a highly restrictive scenario as the allowed values of NS fluxes in the S-dual type I picture

leave us with only two discrete choices [36].
6The dilaton will in general not be a constant in the heterotic theory because of the presence of torsion.

The only exception is when the torsion is generated by Chern classes as we shall see in section 4.
7As is well known, the n = 2 case is the simplest, with the Z2 action considered in a specific way [40]. In

general the typical Zn action involves extra seven branes in the picture [41, 42]. We will discuss this later.
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Using our analysis in the previous section we now claim that in the heterotic theory

we will have a background of the form

ds2 = eφds2AdS5
+ ds2X5 , (3.16)

that satisfies all the requirements laid down in the previous section. Here φ is the dilaton

that depends only on the coordinates of the internal space X5 and not on the radial

coordinate r. This non-trivial dilaton will be supported by a background torsion H.

To be specific, our earlier arguments then require us to start with an AdS5 × S5

background in type IIB string theory given (in units of α′) by

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dr2 +R2dΩ2

5, (3.17)

where µ, ν = 0, 1, 2, 3 are the spacetime directions and R is the curvature radius of the AdS

space given by

R4 = 4πgsN . (3.18)

Here N is the quantised charge of the five-form F5:

∫

S5

F5 = (4π2α′)2N . (3.19)

Furthermore, in the absence of NS and RR three-forms the five-form F5 can be written as

F5 = dC(4) + ∗dC(4) with the RR four-form, C(4), given by

C(4) =
r4

gsR4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (3.20)

Finally the metric of the five-sphere, dΩ2
5, in (3.17) is

dΩ2
5 = dγ2 + cos2γ dϕ2

3 + sin2γ
(

dψ2 + cos2ψ dϕ2
1 + sin2ψ dϕ2

2

)

, (3.21)

where 0 ≤ γ, ψ ≤ π
2 and 0 ≤ φi ≤ 2π. We see that there are three local isometries along

directions ϕ1, ϕ2 and ϕ3. We can choose ϕ1 and ϕ2 as the directions along which to

perform our T-dualities, but we have to take care because there are no global one-cycles

in the manifold. In fact, at the points

γ = 0; ψ = 0; ψ =
π

2
, (3.22)

the cycles all shrink to zero size and the U-dual manifold will be non-compact. To avoid

these issues, we will make our U-dualities away from the points (3.22). Now using the

sigma model identifications, we find the following background in heterotic theory:

ds2 =
1

2
R2sin2γ sin2ψ

[

r2

R2
dxµdx

µ +
R2

r2
dr2
]

+
1

2
R4sin2γ sin2ψ

[

dγ2 + cos2γdϕ2
3 + sin2γ dψ2

]

+ tanψ dϕ2
1 + cotψ dϕ2

2;
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eφ =
1

2gs

(

R2 sin2γ sin 2ψ
)

; (3.23)

H =
4r3

R4
e2φ ∗

(

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr ∧ dϕ1 ∧ dϕ2

)

+ O(α′)

= −4R4

g2
s

sin3 γ cos γ sinψ cosψ dγ ∧ dψ ∧ dϕ3 + O(α′) ,

with an additional vector bundle that we will describe later. This vector bundle has to

satisfy the modified DUY equations which appear because of the background torsion [24,

26]. Furthermore our Hodge star operation is defined for a generic p-form in the following

way:

(∗ω)µ1µ2......µ10−p
=

√−g
p!

ǫ
ν1ν2......νp

µ1µ2......µ10−p ων1ν2......νp . (3.24)

Observe that the new background on the heterotic side is not quite an AdS5 background

because of the unusual warp factors, although the radial dependence remains like that of

the standard type IIB AdS5 background. The internal space is also not an S5 anymore. The

metric has non-trivial warp factors that make the background non-Kähler. Furthermore,

the dilaton is not a constant, and H is in general more complicated than the standard

form8

H = e2φ ∗
[

d(e−2φJ)
]

. (3.25)

However we do expect the anomaly-cancelling Bianchi identity with R(+) and a vector

bundle with curvature F defined on the internal six-dimensional space, to hold as:

dH =
α′

4

(

tr R(+) ∧R(+) −
1

30
Tr F ∧ F

)

. (3.26)

To read off physical quantities, we transform the metric into the Einstein frame via g
(E)
MN =

e−φ/2g
(S)
MN . After restoring the necessary factors of α′ and rescaling xµ (g

1/4
s α′1/2 xµ →

xµ), (3.23) in the Einstein frame is given by

ds2 = sin γ
√

sinψ cosψ

[

r2

R
dxµdxµ + α′√gsR3

(

dr2

r2
+ dγ2 + cos2 γdφ2

3 + sin2 γdψ2

)

]

+
α′
√
gs sin

1

2 ψ

R cos
3

2 ψ sin γ
dφ2

1 +
α′
√
gs cos

1

2 ψ

R sin
3

2 ψ sin γ
dφ2

2, (3.27)

with H given as in (3.23). Note that this geometry has the form of a warped metric (2.1)

with warp factor

h2
w = sin γ

√

sinψ cosψ
r2

R
. (3.28)

8Recall that in the derivation of the dimensional reduction of a ten-dimensional heterotic action on a

manifold with torsion [43] it is assumed that the warp factor is exactly equal to the dilaton (as in [33] for

example). For us this is not the case, so there will be corrections. Additionally our background (3.23) does

not have the standard form of G-structures discussed in [44]. We will address these issues elsewhere.
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One can check that the background given by (3.27) or equivalently (3.23) is a consistent

solution. With H given as in (3.23), the equation of motion d ⋆H = 0 is trivially satisfied.

The dilaton equation,

1√−g∂M
(√−g∂Mφ

)

+
e−φ

12
H2 = 0, (3.29)

is also satisfied. Finally the Einstein equation, GMN = 1
2TMN , where GMN is the Einstein

tensor and TMN is the stress-energy tensor given by

TMN = ∂Mφ∂Nφ− 1

2
gMN∂Pφ∂

Pφ+
e−φ

2
HMPQH

PQ
N − e−φ

12
gMNH

2, (3.30)

is also satisfied.9 This gives us a powerful test of the consistency of our background. As

mentioned above, the background (3.23) is well defined away from the points (3.22). Our

sigma-model identification clearly fails at these points. It is then no surprise that the Ricci

scalar for the metric (3.27), given by

R =
1 + 4 sin2 ψ cos2 ψ sin2 γ

2α′
√
gsR3 sin3 γ sin5/2 ψ cos5/2 ψ

, (3.31)

diverges at the points (3.22) mentioned above.

Such divergences can easily be cured by removing these points from the original

S5 (3.21). Then the metric (3.23) is a good description of the geometry away from these

points, and the global six-dimensional manifold will be a compact non-Kähler manifold

when we cut off the radial direction and replace it with a smooth cap. Physically, the

quantity gsN corresponds to the integral of the three-form over a three-cycle of our non-

Kähler manifold. As mentioned above, the four-dimensional spacetime is then a warped

Minkowski spacetime with warp factor given by (3.28).

Once the singular points are smoothed out, the manifold will have a well-defined Rie-

mann tensor globally. In fact there will now be an O(α′) correction to the torsion H (3.23)

from the Riemann tensor two-form Rω that is linear in the torsion one-form. The total

torsion H for the smooth manifold will then be a combination of the result (3.23) and the

new contribution from the two-form Rω. This is given by:

H ≡ H +
α′

2
Tr
(

H̃(3) ∧Rω + . . . .
)

+ O(α′2), (3.32)

whereH is defined in (3.23), H̃(3) is the one-form created fromH using the vielbeins and Rω

is defined, using the gravitational spin-connection at zeroth order in α′, in the following way:

Rω = dω +
2

3
ω ∧ ω. (3.33)

Thus the trace in (3.32) is the natural trace over the holonomy group of the internal man-

ifold. The dotted terms involve higher orders in H̃(3) whose discussion we postpone for the

9More details on how this solution solves the Einstein equations are given in the appendix.

– 14 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
6

next section. Here we want to point out that the total torsion (3.32) is well defined for our

non-Kähler manifold as long as Rω is well defined. It is also not closed, and satisfies

dH = O(α′). (3.34)

This O(α′) can come from two potential sources: from the curvature correction discussed

above, and from the embedding (3.7). We expect these contributions to combine nicely to

give us the expected Bianchi identity.

3.2.1 The vector bundle

As emphasised before, the embedding (3.7) implies that the spin connection cannot be

embedded in the gauge connection to get a full non-Kähler geometry. So the question

is to determine the precise vector bundle on the heterotic side. Using our sigma-model

identification, all we now need is to add open string worldsheets. This is subtle because

generic open string worldsheets would ruin the conformal invariance in the original type

IIB picture. Now, parametrising a unit radius S5 in type IIB by

z = cos γ eiϕ3 , v = sin γ cos ψ eiϕ1 , ṽ = sin γ sin ψ eiϕ2 , (3.35)

we see that the S5 can be written as

dΩ2
5 = |dz|2 + |dv|2 + |dṽ|2, (3.36)

from which it is clear that vector bundles in the heterotic side should correspond to seven-

brane configurations that are stretched along z and wrap a non-trivial two-cycle in (v, ṽ)

space. This configuration should have no global charge, and the distances between the

seven branes should be parametrised by the (ϕ1, ϕ2) coordinates. It is possible to preserve

conformal invariance in this set-up, so that the IIB metric remains AdS5 and the global

symmetries areGi. Under U-duality this will then give us the vector bundles in the heterotic

side.

With these constraints the background (3.23) will allow the corresponding Gi vector

bundles respectively. The original SO(32) or E8×E8 gauge symmetry of the heterotic string

would then be broken to any of these gauge symmetries by the corresponding Wilson lines.

On the other hand, if the seven branes wrap a four-cycle in (v, ṽ) space instead of a two-

cycle there is a simple way to get conformally invariant backgrounds with open strings:

these are the constant coupling backgrounds of [45, 46], whose AdS limits were worked

out in [41, 42]. In terms of the bulk picture this is an F-theory compactification with

appropriate seven branes inserted [47]. Arranging these seven branes in certain special

ways one can generate four distinct constant coupling backgrounds in type IIB theory

(see [45, 46] for details). Out of the four allowed backgrounds associated with the global

symmetries (D4, E6, E7 and E8), two — D4 and E7 — can be pulled to the heterotic side

using our technique without generating extra fluxes. The final metrics for the two cases

will look exactly the same as in (3.23) except that ϕ3 will be periodic with period

0 ≤ ϕ3 ≤ π for D4 and 0 ≤ ϕ3 ≤ π

2
for E7, (3.37)
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and the resulting picture will be a configuration of heterotic five-branes associated with

these global symmetries. For the other two cases, namely global symmetries E6 and E8,

the heterotic backgrounds are defined with

0 ≤ ϕ3 ≤ 2π

3
for E6 and 0 ≤ ϕ3 ≤ π

3
for E8, (3.38)

and with an additional two-form NS flux BNS = 1
2dϕ1 ∧ dϕ2 with zero field strength. This

flux is not globally defined because the ϕi are not globally defined coordinates. Furthermore

the dilaton for these two cases differs slightly from (3.23) by an overall constant:

eφ =

√
3

4

(

R2 sin2γ sin 2ψ
)

, (3.39)

leading to another configuration of heterotic five branes.10 Vector bundles in this set-up

correspond to an intersecting configuration of seven branes, much like the one studied by

Gimon and Polchinski [49]. A more detailed discussion of these issues will be addressed

elsewhere.

3.2.2 Related AdS-type backgrounds

Before we end this section, we note that if we change the orientation of the three-form

flux H from ϕ1, ϕ2 to ϕ1, ϕ3, keeping other factors unchanged, we can generate a slightly

different background that falls in the same class as (3.23):

ds2 =
1

2
R2 sin 2γ cos ψ

[

r2

R2
dxµdx

µ +
R2

r2
dr2
]

+
1

2
R4 sin 2γ cos ψ

[

dγ2 + sin2γ dψ2 + sin2γ sin2ψ dϕ2
2

]

+tan γ cos ψ dϕ2
3 + cot γ sec ψ dϕ2

1;

eφ =
1

2gs

(

R2 sin 2γ cos ψ
)

; (3.40)

H = −4R4

g2
s

sin3 γ cos γ sinψ cosψ dγ ∧ dψ ∧ dϕ2 + O(α′) .

This metric also has singularities. The Ricci scalar for this background in the Einstein

frame scales like R ∼ sin−5/2 γ cos−5/2 γ sin−5/2 ψ, which diverges at γ = 0, γ = π/2 and

ψ = π/2. Excising these points, and cutting off the radial direction to replace it with

a finite cap we can have a smooth non-Kähler manifold that has well-defined curvature

forms. The full torsion for the manifold to higher orders in α′ can now be easily computed

following our earlier analysis (3.32).

Yet another background, also falling in the same class, can be derived by changing the

orientation of the three-form from ϕ1, ϕ2 to ϕ2, ϕ3. This corresponds to taking sinψ →
10It is interesting to note that the Argyres-Douglas points [48] would correspond to the following period-

icities for ϕ3:
ˆ

0, 5π

3

˜

,
ˆ

0, 3π

2

˜

, and
ˆ

0, 4π

3

˜

, associated respectively with A0, A1 and A2 global symmetries in

type IIB theory. An analysis of the metric, dilaton and torsion can easily be done for these cases too but

we will not dwell on them here as our emphasis is more on studying axions than new non-Kähler manifolds.
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cosψ in (3.40):

ds2 =
1

2
R2 sin 2γ sin ψ

[

r2

R2
dxµdx

µ +
R2

r2
dr2
]

+
1

2
R4 sin 2γ sin ψ

[

dγ2 + sin2γ dψ2 + sin2γ cos2ψ dϕ2
1

]

+tan γ sin ψ dϕ2
3 + cot γ cosec ψ dϕ2

2;

eφ =
1

2gs

(

R2 sin 2γ sin ψ
)

; (3.41)

H = −4R4

g2
s

sin3 γ cos γ sinψ cosψ dγ ∧ dψ ∧ dϕ1 + O(α′) .

This geometry also has singularities at γ = 0, γ = π/2 and ψ = 0, and following the

same procedure as before we can have a smooth non-Kähler geometry with torsion and

non-trivial vector bundles.11

3.3 The axion decay constant

Having constructed specific warped AdS heterotic backgrounds we can calculate the nor-

malization constant β from (2.7) and find the axion decay constant fa from (2.14). The

AdS geometries presented in the previous section should be considered as local warped

regions or throats, which are glued in the UV to the compactification bulk. The warped

throat is glued to the bulk at r = L, where for consistency we impose R ≃ L , where

R = (4πgsN)1/4 is the AdS curvature radius of the AdS geometry. The overall size of

the bulk of the compactification, R6, is assumed to be much bigger than the size of the

throat, R6 ≫ L, such that the bulk contains most of the volume of the compactification.

Furthermore, it is assumed that the bulk is not warped.

The AdS geometry is also subject to an IR cut off, when r → 0. There is a conical

singularity at r = 0 and we assume that the geometry near the tip of the cone or throat

is modified such that this singularity is smoothed out as in the Klebanov-Strassler (KS)

background [50]. The IR geometry is cut off at r = r0 and the value of the warp factor h0

at r0 (after integrating the angular directions) is given by

h0 =
r0√
R
. (3.42)

As in the KS solution, there are corrections to h0 due to IR modification of the throat.

We expect them to be sub-leading and that they will not play a significant role in our

discussion.

Noting that 4πκ2
10 = m−8

s and defining the volume of the bulk to be v6 = R6
6/4π, the

11Note however that there is an apparent obstruction to pulling the constant coupling backgrounds

of [45, 46] to the heterotic side using our sigma-model identifications.
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four-dimensional gravitational coupling from (2.4) is

M2
P = 4πm8

s

(

R6
6

4π
+

1

2
π3R4α′3g

3

2
s (1 − sin4 γ1)(sin

2 ψ2 − sin2 ψ1)(L
2 − r20)

)

≃ m8
sR

6
6

(

1 + 2π4g
3

2
s
R4L2α′3

R6
6

)

≃ m8
sR

6
6 . (3.43)

Here γ1 and ψi are the cut-off values for the angular variables γ and ψ at the singular

points (3.22). In going from the first line to the second line above, it is assumed that

r0 ≪ L, γ1 → 0, ψ1 → 0 and ψ2 → π/2. To obtain the final answer, as mentioned

before, it is assumed that the bulk contains most of the volume of the compactification,

corresponding to R4L2α′3 ∼ L6α′3 ≪ R2
6.

Similarly, for β we obtain

β =

(

R6
6

4π

)−1 [

e−φB
R6

6

4π
+ 4π3R4α′3g

5

2
s

∣

∣

∣

∣

ln

(

tanψ2

tanψ1

)

ln(sin γ1)

∣

∣

∣

∣

(

1

r20
− 1

L2
0

)]

≃ g
5

2
s

4π2

m2
s

M2
P

∣

∣

∣

∣

ln

(

tanψ2

tanψ1

)

ln(sin γ1)

∣

∣

∣

∣

R4

r20
. (3.44)

In the first line, it is assumed that in the bulk the dilaton field does not change significantly,

and we denote its value in the bulk by φB . To go from the first line to the second line it

is assumed that r0/R
2 ≪ 1, so the second term dominates over the first term. Physically,

this means that the normalization of the zero mode of BNS gets its largest contribution

from the highly warped throat [19 – 21]. This should be contrasted with the normalization

of the graviton zero mode, which is insensitive to the warp factor [51]. The calculation of

the four-dimensional gravitational coupling in (3.43) reflects this.

Plugging this value of β into (2.14), we obtain the axion decay constant

fa ≃
√

8π

g
5/4
s R3/2

∣

∣

∣

∣

ln

(

tanψ2

tanψ1

)

ln(sin γ1)

∣

∣

∣

∣

−1/2

(h0ms) . (3.45)

The dependence on the cut-off angles γ1 and ψ1,2 is expected on physical grounds: the cut-

off represents the deformation of the geometry near the singularities. These deformations

will eventually show up in β and fa, when integrals over the non-singular compactifica-

tion are performed. However, the axion decay constant is very insensitive to the angular

coordinate cut-off; it depends only logarithmically on γ1 and ψ1,2. As long as one is not

exponentially fine-tuning the cut-off parameters to their singular values, the logarithmic

expressions in fa will be of O(1). On the other hand, R = (4πgsN)1/4. For parameters of

physical interest, one can assume gs ∼ 0.1 and 1 . gsN . 100 such that R >∼ 1. Combining

all these in fa, we obtain the following expression for the axion decay constant:

fa = c h0ms , (3.46)

where c is a constant of order 1−10, depending on the geometry of the throat. Recall that

h0ms is nothing but the physical mass scale at the bottom of the throat. This indicates that
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the axion decay constant is controlled by the physical scale of the throat and is insensitive

to the details of the bulk.

To obtain fa within the acceptable range, i.e. 109 GeV . fa . 1012 GeV, all one

has to do is to construct a throat in the string theory compactification with the physical

mass scale within this range. This is easily achieved in the light of recent progress in flux

compactifications [22, 52].

The situation becomes more interesting in a multi-throat compactification. One im-

mediate conclusion of the result above is that in the multi-throat compactification, the

normalization of the axion field (or Bµν field) zero mode is controlled by the longest throat

in the compactification. To obtain axion decay of the right scale, one has to make sure that

the physical mass scale of the longest throat is within the range 109−1012 GeV. In the case

where the physical scales of the throats are comparable, our formulation for calculating β

indicates that

fa =

[

∑

i

c−2
i h−2

0 i

]−1/2

ms (3.47)

where the sum is over all throats. Here h0 i represents the warp factor at the bottom of

the i-th throat and the ci are constants of order unity or so depending on the construction

of the corresponding throat. Thus, even in the situation where the physical mass scale

for each throat is bigger than 1012 GeV, all throats contribute to the normalization of the

axion zero mode such that the sum in (3.47) can bring fa within the desired range.

4. Constant coupling background

The previous examples we have studied give rise to large β provided we impose a reasonable

cut-off when compactifying the geometry. Two important aspects of our previous analysis

were firstly that the dilaton remained independent of the radial coordinate r, even though

the background had non-trivial torsion, and secondly, that the analysis of fa was insensitive

to the cut-off. This was not surprising since local cut-offs in the geometry should not

affect many of the global features of a system. However, it would be nice to construct a

background with torsion in the heterotic theory that is compact from the beginning, and

allows a dilaton that is (at least) independent of the radial coordinate r.

In the following we will sketch a possible background, with torsion and a constant dila-

ton. We will argue that in this background β as defined in (2.7) can be made significantly

greater than one.

A brief discussion of this issue appeared in [28], where new heterotic backgrounds

found via M-theory were studied. Our analysis here will similarly use M-theory to arrive

at the heterotic theory, and will therefore be slightly different from the analysis presented

in section 3. As discussed in [28], we want to emphasise that the localized and non-localized

G-fluxes in M-theory play an important role in determing the precise backreaction effects

on the underlying geometry. The conclusion was that the heterotic manifold will always

be non-Kähler when only non-localized M-theory fluxes are present. On the other hand,

in the presence of only localized fluxes, the manifold may or may not be Kähler. For our

– 19 –



J
H
E
P
0
6
(
2
0
0
8
)
0
5
6

case, we will take the following ansatz for the metric of the heterotic theory in the Einstein

frame:

ds2 = eDgµνdx
µdxν + gmndx

mdxn, (4.1)

where D is the warp factor, µ, ν = 0, . . . , 3 and m,n denote internal coordinates of the

manifold that may or may not be Kähler to begin with. The generic formula for the

non-Kählerity is given in terms of the torsion classes Wi in the following way:12

dJ =
3i

4

(

W1Ω̄ − W̄1Ω
)

+ W3 + J ∧W4, (4.2)

where Ω is the (3,0)-form for the manifold. If we demand that the internal manifold be

complex then W1 = W2 = 0. For our case we will also demand that dB = 0 and vanishing

cosmological constant. This means that the torsion will only come from the Chern-Simons

term and we have a four-dimensional Minkowski space (see [54] for a discussion of cosmo-

logical constant from the torsion classes). The general formula for non-Kählerity can then

be found from (4.2) to take the following form:

dJ = α′ ∗ [Ω3(ω+) − Ω3(A)] + a1 e
−2φdφ ∧ J + a2 dD ∧ J, (4.3)

where a1 and a2 are constant coefficients whose values could be determined from (4.2), A

is the one-form gauge bundle and φ is the heterotic dilaton. Observe that we have not

identified the dilaton φ with the warp factor D. This is therefore more generic than the

corresponding formula presented in [30, 33, 31].

Thus, even in the absence of a background three-form, the manifold can become non-

Kähler due to the presence of vector bundles, a non-trivial dilaton and the warp factor.

Kählerity is restored only when

ω+ = A, φ = constant, D = 0, (4.4)

which are precisely the conditions studied in [55]. Here we have derived the conditions by

demanding a Kähler compactification from the generic equation for dJ .

Let us now imagine that we do not turn on any non-localized gauge fluxes and at

the same time do not allow the standard embedding. Then naively we would expect to

get a non-Kähler manifold with the non-Kählerity coming precisely from the difference

Ω3(ω+) − Ω3(A) (and the dilaton and warp factor) where

Ω3(A) =
1

30
Tr

(

A ∧ F − 1

3
A ∧A ∧A

)

, (4.5)

and Ω3(ω+) is defined equivalently but with a trace in the fundamental representation of

the holonomy group. In fact, the three-form fluxes will typically look like [27, 26]

HABC = fABC +
α′

2
Tr

(

ω∧ f̃ ∧ f̃ + f̃ ∧Rω +
1

2
f̃ ∧ df̃ − 1

6
f̃ ∧ f̃ ∧ f̃

)

ABC

+O(α′2), (4.6)

12See [37, 53] for details about torsion classes.
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where fABC = α′[Ω3(ω) − Ω3(A)]ABC and ω is the gravitational spin connection at zeroth

order in α′ (see [26] for more details). We have also defined f̃ as a one-form created from

f using the vielbeins i.e f̃ ab
A ≡ fABCe

BaeCb where eAa is the vielbein, and Rω is defined

in (3.33). In particular the traces are defined in the following way:

Tr
(

ω ∧ f̃ ∧ f̃
)

ABC
≡ ω ab

[A f̃ cd
B f̃ ef

C] Tr (MabMcdMef ) , (4.7)

where Mab is the matrix representation of the holonomy group. Similar definitions work

for the other terms in HABC .

The above three-form backreacts on the geometry to make the space non-Kähler. Thus,

vector bundles without the standard embedding seem to be allowed only on non-Kähler

manifolds, unless there is an additional α′ correction that could cancel the Chern-Simons

term in (4.3). At this point it would be interesting to compare the result with a similar con-

struction discussed in [56] where a fractional gauge Chern-Simons term was switched on the

internal manifold. The key additional ingredient was a background gaugino condensate.13

To conclude, the manifold can still become non-Kähler in the absence of flux via the

relation (4.3). In [56] the Ω3(ω) term was cancelled by one of the Chern-Simons terms of the

gauge fields. Therefore the non-Kählerity in this model arose from vector bundles of one of

the E8 gauge groups. To obtain a Calabi-Yau space we need dJ = 0. For this to be possible

we would need to cancel the Chern-Simons term with the condensate. Fortunately the

condensate is of the same order in α′ as the Chern-Simons term. Furthermore, the presence

of the condensate provides an additional contribution to the superpotential of [27, 43]. This

additional contribution was worked out in [57, 27] following the work of [58] (see also [59]

for some recent works). Additionally, the ten-dimensional Lagrangian for the heterotic

theory will change from (2.2) to the following:

S =
1

2κ2

∫

d10x
√−g

[

R− 1

2
∂Mφ∂

Mφ− 1

12
e−φ

(

HABC − α′

16
e

φ

2 χ̄ΓABCχ

)2

(4.8)

− α′

120
e−

φ

2 Tr
(

FABF
AB
)

− α′

30
Tr
(

χ̄ΓADAχ
)

]

,

where the χA are the gaugino fields of the heterotic theory. From here one can see that

the equation for non-Kählerity is now given by

dJ = α′ ∗ [Ω3(ω+) − Ω3(A)] + a1 e
−2φdφ ∧ J + a2 dD ∧ J + a3 α

′ ∗ 〈χ̄AΓχA〉. (4.9)

The above equation allows for the following scenarios:

• Cancelling the Chern-Simons term with the gaugino condensate14 and the dilaton term

with the warp factor would lead to a Kähler manifold. With the underlying SU(3) structure

this would eventually become a Calabi-Yau manifold.

13The gaugino condensate contributes to the (3,0) and the (0,3) parts of the three-form, and can break

susy, but we will consider a condensate that preserves susy.
14Of course the Chern-Simons term has to be of the form (3,0) + (0,3) with no (2,1) + (1,2) part. This

is highly dependent on the complex structure, and one example of this is provided in [56].
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• The cancellation of Chern-Simons term with the condensate is not always possible.

However the dilaton and warp factor can be both made proportional to a constant.

Then the manifold is Kähler to the zeroth order in α′ and becomes non-Kähler to

the first order in α′ i.e. dJ = O(α′). It would be interesting to see whether the

construction of [56] falls in this category or the previous one.

• The Chern-Simons term is cancelled by the condensate, but the dilaton is a constant.

Then the manifold is non-Kähler due to the warp factor i.e. dJ = O(1). When

the Chern-Simons term is not cancelled but the dilaton is still a constant then the

manifold remains non-Kähler i.e. dJ = O(1) + O(α′).

• Taking the contribution of the background three-form (4.6), one might be able to

retain Kählerity to zeroth and first order in α′. This would mean that the manifold

could become non-Kähler at second order in α′ i.e. dJ = O(α
′2). Of course non-

Kählerity to zeroth and first order in α′ is still possible.

In this paper we will only discuss the implication of the third case, i.e. heterotic

compactification with a constant dilaton, non-trivial warp factor and a torsion generated by

the Chern-Simons term only (a gaugino condensate would make the system more involved).

The background is therefore

ds2 = eDdxµdx
µ + gmndx

mdxn;

eφ = constant; (4.10)

H =
α′

120
Tr

(

1

3
A1 ∧A1 ∧A1 −A1 ∧ F1

)

,

where A1 is the gauge field of one E8 and the spin connection ω+ is embedded in the

gauge connection A2 of another E8, i.e. ω+ = A2. These manifolds are called balanced

manifolds.15

The axion decay constant for this background is formally given by (2.14) where β is

calculated from (2.7) with the replacement h2
w → eD. To find fa explicitly, we would need

to know eD and gmn explicitly. However, motivated by our AdS5 example, we believe that

fa for this background can also be lowered to within the narrow phenomenological bound.

As explained before, the key property here is that we are able to construct a background,

at least in principle, where the dilaton is independent of the warp factor. It would be

interesting to work out the details of the supergravity equations for this background and

verify explicitly that fa can fall to within the desired window.

5. Conclusion

In the present work, the viability of axion constructions in warped heterotic backgrounds

was studied. Manifolds considered in this context previously have in general been found

to result in axion decay constants outside the allowed range, motivating the construction

15We thank Evgeny Buchbinder for pointing this out to us.
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and investigation of new warped AdS-type heterotic backgrounds and their effect on the

axion decay constant. As far as we know, these backgrounds, of the form (in string frame)

ds2 = eφds2AdS5
+ ds2X5 , (5.1)

with non-trivial dilaton and torsion, have not been studied before. From the four-dimensional

point of view these backgrounds are warped Minkowski spacetimes with warp factor given

by (3.28). The compact six-dimensional manifolds are new non-Kähler manifolds, different

from those studied in [22 – 26]. This work can therefore be viewed in two ways: as a study

of the effect of warping in string-theory backgrounds meeting certain criteria on the ax-

ion decay constant or as the phenomenologically motivated construction of new compact

non-Kähler backgrounds in heterotic string theory.

We gave one possible class of constructions of these backgrounds, which we believe

to have smooth global metrics, using sigma-model identifications. It is interesting to note

that the corresponding torsions can be expressed in powers of α′ and satisfy the Bianchi

identity in terms of the vector bundles and the torsional spin connections. We gave a

simple way to construct vector bundles on these manifolds. A crucial feature of these

backgrounds is that the dilaton is independent of the radial direction and therefore not

quite proportional to the warp factor as in [22, 23, 33]. A second class of non-Kähler

manifolds with similar properties was also presented, with the important difference that

the torsion comes only from the Chern classes of the manifolds. These manifolds have been

classified in the literature as either “conformally balanced” or “balanced” manifolds. Our

case was an example of a balanced manifold with a constant dilaton but non-trivial torsion.

We argued that the zero modes of the “model-dependent” axions may also give values

of fa in the desired range, provided we have the precise knowledge of the harmonic two-

forms i.e. h2 in the internal space. These harmonic forms should be peaked near the throat

of our internal space. Unfortunately, so far we have no precise knowledge of these forms

and therefore we cannot make any definative statement here. We believe that one may be

able to find the required internal manifolds with harmonic forms satisfying the required

properties.

The axion in our construction is instead a “model-independent” axion, constructed

from the zero mode of the NS-NS two-form potential Bµν . We have shown that the nor-

malization of the zero mode of the Bµν field gets most of its contribution from the highly

warped regions of the compactification. It is on this fact that our mechanism for lowering

the axion decay constant fa to the desired range (109−1012 GeV) hangs. More specifically,

we have shown that fa is given by the warped mass scale of the longest throat in the com-

pactification. Hence, the question of achieving an axion construction with a viable value

of fa in this set-up is reduced to the question of constructing an AdS-type throat with

mass scale in the desired 109 − 1012 GeV range. As we explicitly demonstrated, heterotic

compactification on any of the presented manifolds with appropriate torsion, dilaton and

vector bundles should thus allow axions with permissible decay constants in a natural way.

Finally, one subtle issue that we have not addressed is the location of the standard

model in our scenario. As is well known, there are two distinct ways we can argue for

the generation of the standard model spectrum. The first is the well known dimensional
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reduction of the SO(32) or E8 × E8 gauge fields on the non-Kähler manifold. Using the

metric ansatze (2.1) we see that the kinetic term of the gauge fields is not supressed by the

warp factor hw. However the interaction of the model-independent axion with the gauge

fields is given by
α′

4κ2

∫

e−φ dB ∧ ∗Ω3(A), (5.2)

where Ω3(A) is the Chern-Simons term for the gauge field, and this is suppressed exactly as

in (2.6). Thus the coupling of the axion (from the B field) and the standard model gauge

fields (from Ω3(A)) is suppressed by the warp factor, and therefore the coupling scale is

set by the scale of the throat.

The second way of generating the standard model, which is rather unconventional, is

to use heterotic NS5 branes wrapped on two-cycles of the internal space. In the SO(32)

heterotic theory the NS5 brane is the small instanton configuration and therefore has a

direct gauge-theory spectrum on its world volume [60]. On the other hand for the E8 ×E8

heterotic theory the NS5 brane spectrum is a tensor multiplet [61]. Multiple NS5 branes

could give us a non-abelian four dimensional gauge theory. Clearly such a theory could be

localised at the throat of the manifold by allowing only suitably localised harmonic forms

in the internal manifold. The axion coupling would then also be given by the scale of the

throat instead of the bulk. Details on this will be presented elsewhere.
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A. The Einstein equation

Here we give Einstein’s equations for our solution in more detail. The Einstein equation is

GMN = 1
2TMN where the stress energy tensor is given by (3.30):

TMN = ∂Mφ∂Nφ− 1

2
gMN∂Pφ∂

Pφ+
e−φ

2
HMPQH

PQ
N − e−φ

12
gMNH

2.

To be specific, we calculate the components of Einstein tensor for the background (3.27):

G00 = −Gii =
r2 (1 + 12 sin2 ψ cos2 ψ sin2 γ)

4
√
gsα′R2 (sin2 γ cos2 ψ sin2 ψ)

;

Grr = −R
4

r4
√
gsα

′G00;

Gγγ =
−1 − 12 sin2 ψ cos2 ψ cos2 γ + 20 sin2 ψ cos2 ψ

4 sin2 γ cos2 ψ sin2 ψ
;

Gψψ = (8 −Gγγ) sin2 γ; (A.1)

Gφ1φ1 =

√
gsα

′G00

r2 sin2 γ cos2 ψ
;
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Gφ2φ2 =

√
gsα

′G00

r2 sin2 γ sin2 ψ
;

Gφ3φ3 =
cos2 γ (−1 + 20 sin2 ψ cos2 ψ sin2 γ)

4 sin2 γ cos2 ψ sin2 ψ
;

Gγψ =
cos γ(cos2 ψ − sin2 ψ)

sin γ sinψ cosψ
.

One can check that the off-diagonal component of the Einstein tensor is sourced by ∂ψφ∂γφ.

With these values for GMN along with H and φ given as in (3.23), one can explicitly check

that the Einstein equations are all satisfied. This demonstrates that the background (3.27)

is a genuine solution. Similarly, one can also check that backgrounds (3.40) and (3.41),

when written in the Einstein frame, are also consistent solutions with the given forms of φ

and H.
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